Поделки ко дню математики

Слайд 1

Древняя математика Математика в древних цивилизациях Панфилов А. ГБОУ СОШ № 1416

Слайд 2

Обобщение математике В системе человеческих знаний есть раздел, занимающийся такими понятиями, как количество , структура , соотношение и т. п. Развитие математики началось с создания практических искусств счёта и измерения линий , поверхностей и объёмов . Понятие о натуральных числах формировалось постепенно и осложнялось неумением первобытного человека отделять числовую абстракцию от её конкретного представления. Вследствие этого счёт долгое время оставался только вещественным — использовались пальцы, камешки, пометки и т. п. С распространением счёта на крупные количества появилась идея считать не только единицами, но и, так сказать, пакетами единиц, содержащими, например, 10 объектов. Эта идея немедленно отразилась в языке, а затем и в письменности.

Слайд 3

История математики Для запоминания результатов счёта использовали зарубки, узелки и т. д. С изобретением письменности стали использовать буквы или особые значки для сокращённого изображения больших чисел. При таком кодировании обычно воспроизводился тот же принцип нумерации, что и в языке. Названия чисел от двух (zwei, two, duo, deux, dvi, два…) до десяти, а также десятков и числа 100 в индоевропейских языках сходны. Это говорит о том, что понятие абстрактного числа появилось очень давно, ещё до разделения этих языков. При образовании числительных у большинства народов число 10 занимает особое положение, так что понятно, что счёт по пальцам был широко распространён. Отсюда происходит повсеместно распространённая десятичная система счисления . Хотя есть и исключения: 80 по-французски quatre-vingt (то есть 4 двадцатки), а 90 — quatre-vingt-dix (420+10); это употребление восходит к счёту по пальцам рук и ног. Аналогично устроены числительные датского, осетинского, абхазского языков. Шумеры и ацтеки, судя по языку, первоначально считали пятёрками.

Слайд 4

Математика в Египте Древнейшие древнеегипетские математические тексты относятся к началу II тысячелетия до н. э. Математика тогда использовалась в астрономии, мореплавании, землемерии, при строительстве домов, плотин, каналов и военных укреплений. Денежных расчётов, как и самих денег, в Египте не было. Египтяне писали на папирусе, который сохраняется плохо, и поэтому в настоящее время знаний о математике Египта существенно меньше, чем о математике Вавилона или Греции. Вероятно, она была развита лучше, чем можно представить, исходя из дошедших до нас документов, что подтверждается тем, что греческие математики учились у египтян. Основные сохранившиеся источники: папирус Ахмеса , он же папирус Ринда (84 математические задачи), и московский папирус Голенищева (25 задач), оба из Среднего царства , времени расцвета древнеегипетской культуры. Все задачи из папируса Ахмеса (записан ок. 1650 года до н. э.) имеют прикладной характер и связаны с практикой строительства, размежеванием земельных наделов и т. п. Задачи сгруппированы не по методам, а по тематике. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами и аликвотными дробями , пропорциональное деление, нахождение отношений, возведение в разные степени, определение среднего арифметического , арифметические прогрессии , решение уравнений первой и второй степени с одним неизвестным.

Слайд 5

Математика в Греции Математика в современном понимании этого слова родилась в Греции. В странах-современниках Эллады математика использовалась либо для обыденных нужд (подсчёты, измерения), либо, наоборот, для магических ритуалов, имевших целью выяснить волю богов ( астрология , нумерология и т. п.). Математической теории в полном смысле этого слова не было, дело ограничивалось сводом эмпирических правил, часто неточных или даже ошибочных. Греки подошли к делу с другой стороны. Во-первых, пифагорейская школа выдвинула тезис « Числа правят миром ». Или, как сформулировали эту же мысль два тысячелетия спустя: « Природа разговаривает с нами на языке математики » ( Галилей ). Это означало, что истины математики есть в известном смысле истины реального бытия. Попытка пифагорейцев положить в основу мировой гармонии целые числа (и их отношения) была поставлена под сомнение после того, как были обнаружены иррациональные числа . Платоновская школа (IV век до н. э.) выбрала иной, геометрический фундамент математики ( Евдокс Книдский ). На этом пути были достигнуты величайшие успехи античной математики ( Евклид , Архимед , Аполлоний Пергский и другие). Греческая математика впечатляет прежде всего богатством содержания. Многие учёные Нового времени отмечали, что мотивы своих открытий почерпнули у древних. Зачатки анализа заметны у Архимеда, корни алгебры — у Диофанта , аналитическая геометрия — у Аполлония и т. д. Но главное не в этом. Два достижения греческой математики далеко пережили своих творцов. Первое — греки построили математику как целостную науку с собственной методологией, основанной на чётко сформулированных законах логики (гарантирующих истинность выводов при условии, что истинны предпосылки). Второе — они провозгласили, что законы природы постижимы для человеческого разума, и математические модели — ключ к их познанию. В этих двух отношениях древнегреческая математика вполне родственна современной.

Слайд 6

Математика в Вавилоне Вавилоняне писали клинописными значками на глиняных табличках, которые в немалом количестве дошли до наших дней (более 500 тыс., из них около 400 связаны с математикой). Поэтому мы имеем довольно полное представление о математических достижениях учёных Вавилонского государства . Отметим, что корни культуры вавилонян были в значительной степени унаследованы от шумеров — клинописное письмо, счётная методика и т. п. Вавилонская расчётная техника была намного совершеннее египетской , а круг решаемых задач существенно шире. Есть задачи на решение уравнений второй степени, геометрические прогрессии . При решении применялись пропорции , средние арифметические, проценты. Методы работы с прогрессиями были глубже, чем у египтян . Линейные и квадратные уравнения решались ещё в эпоху Хаммурапи ; при этом использовалась геометрическая терминология (произведение ab называлось площадью, abc — объёмом, и т. д.). Многие значки для одночленов были шумерскими, из чего можно сделать вывод о древности этих алгоритмов ; эти значки употреблялись, как буквенные обозначения неизвестных в нашей алгебре. Встречаются также кубические уравнения и системы линейных уравнений . Венцом планиметрии была теорема Пифагора , известная ещё в эпоху Хаммурапи. Шумеры и вавилоняне использовали 60-ричную позиционную систему счисления , увековеченную в нашем делении круга на 360°, часа на 60 минут и минуты на 60 секунд. Для умножения применялся громоздкий комплект таблиц. Для вычисления квадратных корней вавилоняне изобрели итерационный процесс: новое приближение получалось из предыдущего по формуле метода Ньютона :

Слайд 7

Математика в Индии Индийская нумерация (способ записи чисел) изначально была изысканной. В санскрите были средства для именования чисел до 1050 (десять в пятидесятой степени). Для цифр сначала использовалась сиро-финикийская система, а с VI века до н. э. — написание « брахми », с отдельными знаками для цифр 1-9. Несколько видоизменившись, эти значки стали современными цифрами, которые мы называем арабскими , а сами арабы — индийскими . Около 500 года н. э. неизвестный нам великий индийский математик изобрёл новую систему записи чисел — десятичную позиционную систему . В ней выполнение арифметических действий оказалось неизмеримо проще, чем в старых, с неуклюжими буквенными кодами, как у греков , или шестидесятеричных , как у вавилонян . В дальнейшем индийцы использовали счётные доски, приспособленные к позиционной записи

Слайд 8

Цифры римские цифры ( I V X L C D M ) шестнадцатеричные цифры ( 0 1 2 3 4 5 6 7 8 9 A B C D E F ) цифры майя (от 0 до 19) в некоторых языках, например, в древнегреческом, в иврите, в церковнославянском, существует система записи чисел буквами и др.


Источник: http://nsportal.ru/shkola/vneklassnaya-rabota/library/2012/03/31/nedelya-matematiki-2012g


Закрыть ... [X]

Презентация по теме: Неделя математики 2012г - Свадебное плетение волос фата



Поделки ко дню математики Поделки ко дню математики Поделки ко дню математики Поделки ко дню математики Поделки ко дню математики Поделки ко дню математики